1. Докажите, что треугольник ABC равнобедренный, и найдите высоту треугольника, проведенную из вершины А, если А(-6;1);В(2;4);С(2;-2)

2. Окружность задана уравнением (x-2)^2+(y+1)^2=25; Написать урfвнение прямой, проходящей через её центр и параллельной оси координат.

1) Найдем длины сторон тр-ка АВС по формуле расстояния между двумя точками: AB=(2+6)2+(41)2=64+9=73;BC=(22)2+(24)2=0+36=36=6;AC=(2+6)2+(21)2=64+9=73. Итак, стороны АВ и АС равны, значит тр-к АВС - равнобедренный, ч.т.д.


2) ВС - основание равнобедренного тр-ка. Высота АР, проведенная к основанию, является также медианой, т.е. Р - середина стороны ВС. Найдем координаты точки Р по формулам координат середины отрезка: х=(2+2)/2=2; у=(4-2)/2=1, т.е. Р(2;1). Тогда длина отрезка АР=\sqrt((2+6)^2+(1-1)^2)=\sqrt(64+0)=8. ЗАДАЧА 2. Из уравнения окр-ти видно, что центр окр-ти находится в точке (2;-1). Так как прямая параллельна оси ОУ и проходит через точку (2;-1), то она имеет уравнение х=2






Похожие задачи:
Loading...