Даны точки E(1; -2; 2), F(3;0;2), K(0; -2; 3) T(2;4;1). Найти: Угол между векторами EF и KT? Расстояние между серединами отрезков EF и KT.

1) Скалярное произведение векторов EF, KT равно: EF*KT=I EF I*I KT I*cosx, где х - искомый угол. Координаты вектора EF: ((3-1);(0+2);(2-2)) или (2;2;0);координаты вектора KT: ((2-0);(4+2);(1-3)) или (2;6;-2);EF*KT=2*2+2*6+0*(-2)=4+12+0=16; I EF I=\sqrt(4+4+0)=\sqrt(8); I KT I=\sqrt(4+36+4)==\sqrt(44). Тогда cosx=(EF*KT)/(I EF I*I KT I)=16/\sqrt(8*44)=16/(4*\sqrt(22))=4/\sqrt(22).






Похожие задачи: