Расстояние от точки М до каждой из вершин правильного треугольника АВС равно 4 см. Найдите расстояние от точки М до плоскости АВС, если АВ=6 см
Если соединим все точки, то получим правильную треугольную пирамиду МАВС, у которой МА=МВ=МС=4см, АВ=ВС=АС=6см. Искомое расстояние - это перпендикуляр МН на нижнюю грань АВС. Так как треуг. АВС правильный, то точка Н будет центром описанной (вписанной тоже) окружности. АН=ВН=СН=R. Радиус окружности, описанной около правильного треугольника вычисляется по формуле: R=a/√3, где а - это сторона треуг АВС.R=6/√3 см. Из треуг-ка АНМ по теореме Пифагора: МН=√(АM^2-AH^2)=√(16-36/3)=2 смПохожие задачи: