Найдите отношение площадей треугольников АВС и PQR, если АВ=12 см, ВС=15 см, АС=21 см, QR=20 см, PR=28 см, PQ=16 см.
Площадь треугольника считала через формулу Геронаплощадь треугольника АВС равна 88площадь треугольника PQR равна 157соотношение- АВС: PQR=88:157
1 способ:Видим, что треугольники подобны:АВ/PQ = BC/QR = AC/PR = 3/4Известно, что отношение площадей подобных фигур равно квадрату коэффициента подобия, то есть 9/16.Ответ: 9/16.2 способ. Проверим результат, найдя площади каждого из тр-ов. Найдем площади по формуле Герона:$$ S=\sqrt{p(p-a)(p-b)(p-c)}. $$Для тр АВС: р = (12+15+21)/2 = 24Для тр PQR: p = (20+28+16)/2 = 32$$ S(ABC)=\sqrt{24(24-12)(24-15)(24-21)}=\sqrt{24*12*9*3}=36\sqrt{6}. $$$$ S(PQR)=\sqrt{32(32-20)(32-28)(32-16)}=\sqrt{32*12*4*16}=64\sqrt{6}. $$Теперь находим отношение площадей:$$ \frac{S(ABC)}{S(PQR)}=\frac{36}{64}=\frac{9}{16}. $$Ответ: 9/16.
Похожие задачи: