Точка К находится на расстоянии 8 см от вершин треугольника со сторонами 5 см, 5 см, 8 см. Найти расстояние от точки К до плоскости треугольника.
Точка К проецируется на плоскость треугольника в точку О - центр описанной окружности, т.к. прям. тр-ки АКО, ВКО и СКО - равны (АК=ВК=СК=8, КО - общий катет). АО = ВО = СО = R - радиус описанной окр-ти. Найдем R, используя две формулы для площади тр-ка:$$ S=\sqrt{p(p-a)(p-b)(p-c)} $$ (1)$$ S=\frac{abc}{4R}. $$ (2)p=(5+5+8)/2 = 9Из (1) получим:S =кор(9*4*4*1) = 12Тогда из (2):R = (5*5*8)/(4*12) = 25/6Теперь из пр. тр-ка АКО найдем искомое расстояние КО по т. Пифагора:КО = кор(AK^2 - AO^2) = кор(64 - 625/36) = (кор1679)/6 = 6,8 (примерно)Ответ: 6,8 см (примерно)
Похожие задачи: