Найдите площадь диагонального сечения правильной усеченной четырехугольной пирамиды, если ее высота √2 см, а стороны основания 1 см и 4 см
Диагональное сечение будет трапецией, в которой основания - диагонали квадратов, а высота равна высоте пирамиды. Диагональ квадрата в \sqrt(2) раз больше его стороны, тогда длины оснований трапеции равны \sqrt(2) и 4\sqrt(2), а их полусумма равна 5\sqrt(2)/2. Площадь трапеции равна произведению полусуммы оснований на высоту. Тогда S=5\sqrt(2)/2*\sqrt(2)=5.Похожие задачи: