1) В прямоугольном треугольнике АВС угол А =90 градусов, АВ=20см, Высота АД=12см. Найдите Ас и cos C.

2) Диагональ ВД параллелограмма АВСД перпендикулярна к стороне АД. Найдите площадь параллелограмма АВСД, если АВ=12см, угол А =41 градус.

1) так... построим этот треугольник... опустим высоту АД на гипотенузу BC ... получается еще один прямоугольный треугольник  АБД, отсюда найдем... проекцию большего катета на гипотенузу....400 = 144 + х (квадрат), х = 16.. теперь у нас высота которая дана нам.. это 12 см по формуле H(квадрат) = ХУ, где х и у проекции катетов на гипотенузу.. так как мы одну из них нашли (16 см) ... подставляем под формулу.. Найдем отсюда вторую проекцию 144 = 16*у, у = 9.. теперь у нас есть гипотенуза от треугольника АБС, отсюда по теореме Пифагора найдем катет АС..625 = 400 + АС(квадрат), АС = 15 см. СОS C = прилежащий катет / на гипотенузу... Отсюда..COS C = 15/25  = 3/5.2) так как диагональ БД перпендикулярна стороне АД, образовался прямоугольный треугольник  ..и так как КОСИНУС УГЛА А = прилежащий  катет /на  гипотенузу.. то отсюда COS 41  = x/12, х = 12 * cos 41... подставим в формулу для нахождения площади параллелограмма АБСД...= S = a * b * sin a, а и b стороны, синус угла А это угол между сторонами... Отсюда получаем S = 12* 12* sin41 *cos 41 = 72 * sin 82





Похожие задачи: