Шар радиуса R вписан в усеченный конус. Угол наклона образующей l к плоскости нижнего основания конуса равен α. Найдите радиусы оснований и образующую усеченного конуса.

Рассмотрим осевое сечение, которое является трапецией ABCD, причем АВ=CD. ∠BAD=α. Проведем BM⊥AD. Тогда BM=O1O2=2R.

В ΔАВМ:

Центр вписанной в ABCD окружности лежит на пересечении биссектрис, так что АО и ВО — биссектрисы, то есть

Так что ΔАВО — прямоугольный, поэтому

Далее, в прямоугольном ΔBОО1:

Так как отрезки касательных, проведенных из одной точки к окружности, равны, то BК=BО1 и AO2=AK.

Тогда

Ответ:





Похожие задачи: