В треуголнике АВС АВ=2. ВС=3 и угол ВАС в 3 раза больше угла ВСА. Найдите радиус описанной окружности.
Пусть ABCD- треугольник, AB=2, BC=3, Угол BAC = 3* угла BCA Пусть угол BAC=x, тогда угол BAC=3x и по теореме синусов можно записать3/sin(3x)=2/sin(x)=2RОткуда2sin(3x)=3sin(x)2*(3sin(x)-4*sin^3(x))=3sin(x)6-8sin^2(x)=38sin^2(x)=3sin^2(x)=3/8sin(x)=sqrt(3/8) 2/sin(x)=2R => R=2/2sin(x)=1/sin(x) =1 : sqrt(3)/sqrt(8) =sqrt(8)/sqrt(3)=2*sqrt(2)/sqrt(3) R=2*sqrt(2)/sqrt(3)Похожие задачи: