Основание равнобедренного треугольника 16см, а боковая сторона 10см. Найти радиусы вписаной и описанной окружностей и растояние между их центрами.
Высота, опущенная на основание, находится по теореме Пифагора:h^2 = 10^2 - (16/2)^2 = 36, h = 6Площадь равна:S = 16*6/2 = 48 cm^2Найдем полупериметр:р = (16+10+10)/2 = 18 см. Воспользуемся формулами площади через радиусы вписанной и описанной окружности:S = pr, r = S/p = 48/18 = 8/3 cmS = abc/(4R), R = abc/(4S) = 16*10*10/(4*48) = 25/3 cm. Центры окружностей находятся на высоте, опущенной на гипотенузу. Центр описанной окружности находится от основания высоты на расстоянии:кор(R^2 - 8^2) = кор( 625/9 - 64) = кор(49/9) = 7/3. Центр вписанной окружности находится на расстоянии r= 8/3 см от основания высоты. Тогда расстояние между центрами: 8/3 - 7/3 = 1/3.Ответ: r= 8/3 см; R = 25/3 см; 1/3 см.Похожие задачи: