ПРЕДСТАВЬТЕ В ВИДЕ СМЕШАННЫХ ЧИСЕЛ НЕПРАВИЛЬНЫЕ ДРОБИ
147
132
465
2110
158
74
1813
113
6010
75
718
1911
179
116

1)2
2)6 1/2
3)9 1/5
4)2 1/10
5)1 7/8
6)1 3/4
7)1 5/13
8)3 2/3
9)6
10)1 2/5
11)8 7/8
12)1 8/11
13)1 8/9
14)1 5/6
так вот рассуждают:
15/8 мы 15 делим на 8 получается 1, 1×8=8, 15-8=7, а знаменатель остаётся тот же, вот и получается 1 7/8



« назад
вперед »


Похожие задачи:
Вычислить:
$$6. \frac{(140\frac{7}{30} - 138\frac{5}{12}) : 18\frac{1}{6}}{0,002}.$$

смотреть решение >>
Из 0,3 т свежих яблок получается 57 кг сушёных. Сколько сушёных яблок получится из 5,5 т свежих?

смотреть решение >>
Из 20 кг яблок получается 16 кг яблочного пюре. Сколько яблочного пюре получится из 45 кг яблок?

смотреть решение >>
Найдите частное и остаток от деления:
а) 138 на 7; б) -16 на 3; в) -4 на 5.

смотреть решение >>
Докажите, что при любых допустимых значениях переменной значение выражения:
Докажите, что при любых допустимых значениях переменной значение выражения:

смотреть решение >>
  • Главная
  • Геометрия
    • Алгебра
      • Возведение в степень произведения и степени
      • Возведение двучлена в степень
      • Вынесение множителя за знак корня. Внесение множителя под знак корня
      • Вынесение общего множителя за скобки
      • Выражения с переменными
      • График линейного уравнения с двумя переменными
      • Деление дробей
      • Деление с остатком
      • Доказательство неравенств
      • Задачи с решением
      • Квадратные корни. Арифметический квадратный корень
      • Квадратный корень из произведения и дроби
      • Квадратный корень из степени
      • Корни квадратного уравнения
      • Линейная функция и её график
      • Линейное уравнение с двумя переменными
      • Линейное уравнение с одной переменной
      • Линейные неравенства с двумя переменными и их системы
      • Многочлен и его стандартный вид
      • Нахождение приближённых значений квадратного корня
      • Неравенства с одной переменной. Системы неравенств
      • Одночлен и его стандартный вид
      • Основное свойство дроби. Сокращение дробей
      • Пересечение и объединение множеств
      • Погрешности
      • Преобразование выражений
      • Преобразование выражений, содержащих квадратные корни
      • Преобразование целого выражения в многочлен
      • Применение различных способов для разложения на множители
      • Простые и составные числа
      • Прямая пропорциональность и её график
      • Разложение многочлена на множители способом группировки
      • Разложение на множители с помощью формул квадрата суммы и квадрата разности
      • Разложение на множители суммы и разности кубов
      • Разложение разности квадратов на множители
      • Рациональные выражения
      • Решение дробных рациональных уравнений
      • Решение задач с помощью квадратных уравнений
      • Решение задач с помощью рациональных уравнений
      • Решение задач с помощью систем уравнений
      • Решение систем линейных уравнений
      • Свойства числовых неравенств
      • Системы линейных уравнений с двумя переменными
      • Сложение и вычитание дробей с одинаковыми знаменателями
      • Сложение и вычитание дробей с разными знаменателями
      • Сложение и вычитание многочленов
      • Сложение и умножение числовых неравенств
      • Сравнение значений выражений
      • Среднее арифметическое, размах и мода
      • Степень с натуральным показателем
      • Степень с целым отрицательным показателем
      • Теорема Виета
      • Тождества. Тождественные преобразования выражений
      • Умножение дробей. Возведение дроби в степень
      • Умножение и деление степеней
      • Умножение многочлена на многочлен
      • Умножение одночлена на многочлен
      • Умножение одночленов. Возведение одночлена в степень
      • Умножение разности двух выражений на их сумму
      • Уравнение и его корни
      • Уравнения с параметром
      • Формулы сокращённого умножения
      • Функции и графики
      • Функции у = х2 и у = х3 и их графики
      • Функция y = k/x и ее график
      • Числовые выражения
      • Числовые промежутки
    • Математика
      • Контакты

      Правообладателям © 2025  Все права защищены законодательством РФ.