Докажите, что прямые x + y = 5, 2х - у = 16 и х + 2у = 3 пересекаются в одной точке. Каковы координаты этой точки?
Решение:
Похожие задачи:
Докажите, что прямые x + y = 5, 2х - у = 16 и х + 2у = 3 пересекаются в одной точке. Каковы координаты этой точки?
смотреть решение >>
смотреть решение >>
Даны четыре точки А, В, С, D, не лежащие в одной плоскости. Докажите, что прямые, соединяющие середины отрезков АВ и CD, АС и BD, AD и BC, пересекаются в одной точке.
смотреть решение >>
смотреть решение >>
1. Площадь ромба равна S. Найдите площадь четырехугольника, вершинами которого являются середины сторон ромба.
смотреть решение >>
2. Две окружности с центрами в точках О1 и О2 пересекаются в точках А и А1, а отрезки АВ и АС - их диаметры. Найдите величины углов АА1В и АА1С и докажите, что точки В, А1 и С лежат на одной прямой.
3. Медианы треугольника со сторонами 5 см, 6 см и 7 см пересекаются в точке О. Найдите расстояние от точки О до прямых, содержащих стороны треугольника.
4. Четырехугольник ABCD вписан в окружность. Известно, что угол ABD=30*, угол ACB=30*, угол BDC=20*. Найти углы четырехугольника ABCD.
смотреть решение >>
Докажите, что три прямые х + 2у = 3, 2x - у = 1 и 3х + у = 4 пересекаются в одной точке.
смотреть решение >>
смотреть решение >>
В треугольнике АВС проведены медианы AA1 и BB1, которые пересекаются в точке М. В треугольнике АМВ проведена средняя линия PQ. Докажите, что четырехугольник A1B1PQ — параллелограмм. 2) Докажите, что любые две медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины. 3) Докажите, что все три медианы треугольника пересекаются в одной точке.
смотреть решение >>
смотреть решение >>