Докажите, что всякое простое число, начиная с 5, увеличенное или уменьшенное на 1, делится на 6.


Решение:


6 = 3 • 2 - для того чтобы число делилось на 6 необходимо и достаточно чтобы число делилось на 2 и на 3.
2 - единственное простое чётное число, а так как мы рассматриваем простые числа, начиная с 5, то все рассматриваемые простые числа являются нечётными. Прибавление или вычитание единицы изменяет чётность. Поэтому всякое простое число, начиная с 5, увеличенное или уменьшенное на 1, делиться на 2. Так как исходное число простое, начиная с 5, значит оно не делиться на 3, обозначим его переменной х. Очевидно, что х - 1 либо х + 1 делиться на 3, так как точно одно из 3 последовательный чисел делиться на 3.



Похожие задачи: